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Abstract. The thermodynamic, electronic and magnetic properties of Ni at high pressures have
been calculated using the ab initio pseudopotential plane-wave method and the density-functional
theory. The P –V –T equation of state is obtained from the Helmholtz free energy of the crystal in
the quasiharmonic approximation. The pressure dependence of the thermal expansion coefficient,
bulk modulus, electronic band structure, phonon spectrum and the magnetic moment are presented.
The calculated results are in good agreement with the available experiment measurements.

1. Introduction

High-pressure study of solids is of both practical and theoretical importance. The development
of high-pressure techniques such as piston–cylinder, diamond-anvil-cell (DAC) and shock-
wave methods [1–3] enables us to measure the pressure dependence of a lot of material
properties. In high-pressure studies, the accuracy of the pressure measurement is determined
by the precision of the pressure calibration. Most pressure gauges work precisely for pressures
below 10 GPa. When the pressure goes higher, there is considerable uncertainty about the
absolute accuracy of the high-pressure measurement [4]. The change in the unit-cell volume
of a high-symmetry solid is a good measure of the pressure applied to the solid up to several
hundreds of GPa. Once the P –V –T relationship, i.e., the equation of state (EOS), for a given
material is known, an accurate pressure scale can be obtained. In order to predict the EOS
in the high-pressure domain, a lot of theoretical models [5] have been proposed. These EOS
models use the available low-pressure data such as the volume V0, the isothermal bulk modulus
B0 and its pressure derivatives B ′

0 and B ′′
0 as inputs to predict the high-pressure behaviours

of materials. However, the validity of these semi-empirical EOSs needs to be checked by
acquiring more experimental data or by first-principles calculations.

The development of first-principles electronic structure calculations based on density-
functional theory (DFT) provides an effective tool for studying the zero-temperature energetics
of many systems. This method has been widely extended to finite-temperature studies by
including the phonon contributions to the free energy of the crystal. There are a number of ways
to study the thermodynamic properties of solids within the framework of DFT. One approach
is that of ab initio constant-pressure molecular dynamics [6,7] in which the thermal properties
can be evaluated by statistically averaging over all dynamical configurations. An alternative
approach is to calculate the free energy using the ab initio lattice dynamics in the quasiharmonic
approximation [8]. In this approximation, the Helmholtz free energy is calculated by adding a
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dynamical contribution to static lattice total energy. The dynamical contribution is nowadays
conveniently calculated by using the density-functional perturbation theory (DFPT) [9, 10].
Anharmonic effects are included through the explicit volume dependence of the vibrational
frequencies. Calculations based on various semi-empirical models [11–14] as well as on first-
principles methods [15–20] demonstrate that the quasiharmonic approximation provides a
reliable description of the dynamic properties of many bulk materials below the melting point.

In this study, we apply the quasiharmonic approximation to the study of the pressure
dependence of the thermodynamic, electronic and magnetic properties of nickel which is a
ferromagnetic 3d transition metal. The first-principles EOS is constructed from the Helmholtz
free energy. The thermal expansion coefficient and bulk modulus are then calculated at different
pressures and temperatures. The pressure dependence of the electronic structure, phonon
spectrum as well as the magnetic moment are presented.

2. Computational method

For a given temperature T and a volume V , the Helmholtz free energy of a crystal can be
expressed in the quasiharmonic approximation as [21]

F(V, T ) = E(V ) + Fvib({ω(V )}, T ) ≡ E(V ) + kBT
∑

q

∑
j

ln

{
2 sinh

(
h̄ωj (q)

2kBT

)}
(2.1)

where E is the static contribution to the internal energy—which is easily accessible by means
of standard DFT calculations, Fvib represents the vibrational entropy contribution to the free
energy and ωj(q) is the frequency of the j th phonon mode at the wave vector q in the Brillouin
zone (BZ). The volume dependence of ωj(q) can be accurately obtained from the parameter-
free ab initio calculations of the DFPT [9, 10].

The EOS is constructed as

p(V, T ) = −
(

∂F

∂V

)
T

= −∂E

∂V
− ∂Fvib

∂V
= −∂E

∂V
+

1

V

∑
q

∑
j

γj (q)E(ωj (q)) (2.2)

where γj (q) is the Grüneisen parameter corresponding to the (q, j) phonon mode, defined as

γj (q) = −∂ωj (q)

∂V

V

ωj (q)
(2.3)

and E(ωj (q)) is the mean vibrational energy of the (q, j) phonon given by

E(ωj (q)) = h̄ωj (q)

[
1

2
+

1

exp(h̄ωj (q)/kBT ) − 1

]
. (2.4)

The thermal expansion at a given temperature and pressure is obtained directly from the
EOS (2.2) and the volume thermal expansion coefficient is defined as

αV = 1

V

(
∂V

∂T

)
P

. (2.5)

The temperature dependence of the bulk modulus is obtained from

B(T ) = V

(
∂2F

∂V 2

)
T

= V
∂2E

∂V 2
+ V

(
∂2Fvib({ω(V )}, T )

∂V 2

)
T

. (2.6)

The static total energy E(V ) and the volume-dependent phonon frequencies ωj(q) in the
above equations are calculated by using DFT and DFPT respectively, with the generalized
gradient approximation (GGA) [22] to the exchange–correlation functional. The interaction
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between the valence electrons and the atomic core is described by nonlocal and norm-
conserving pseudopotentials [23]. Electronic Kohn–Sham wave functions are expanded
in a plane-wave basis with a 70 Ryd cut-off. Sums over occupied electronic states are
performed by the Gaussian-smearing special-point technique [24,25], using a Gaussian width
of 0.05 Ryd and 60 k-points in the irreducible wedge of the BZ. The magnetic moment of Ni is
obtained from spin-polarized self-consistent band-structure calculations. Phonon frequencies
are calculated on a (4 × 4 × 4) regular mesh and Fourier-interpolated in between. This Fourier
interpolation amounts to including real-space inter-atomic force constants up to the fourth shell
of neighbours. A total of 560 special q-points in the irreducible wedge of the BZ are used in
the phonon density-of-states (DOS) calculations.

3. Results and discussion

The P –V –T EOS of Ni calculated according to equation (2.2) is shown in figure 1. The ranges
of the pressure P and temperature T are from 0 to 80 GPa and from 0 to 800 K, respectively.
V0 (11.16 Å3) is the equilibrium volume per Ni atom at zero pressure and T = 298 K. It can be
seen that at a low pressure, the ratio V/V0 increases significantly as the temperature changes
from 50 K to 800 K, which means a large thermal expansion. As the pressure goes higher,
the magnitude of the thermal expansion decreases monotonically. When the pressure reaches
80 GPa, we find that the thermal expansion is very small over the whole temperature range
from 50 K to 800 K. In figure 2, we compare our calculated results for the P –V relationship
(solid line) at T = 298 K with the available experimental data [26]. The agreement between
the theory and the experiment is excellent over the whole pressure range studied here. We also
present the results for three semi-empirical EOSs in figure 2: the dashed line for the Birch [27]
EOS, the dotted line for the Murnaghan [28] EOS and the dot–dashed line for the APL (here
L = 2) EOS proposed by Holzapfel [29]. It can be seen that the Birch model and the APL

model work almost as well as the ab initio calculations for the system and the pressure range
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Figure 1. The calculated P –V –T relationship of Ni.
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Figure 2. Comparison of the calculated P –V relationship (solid line) at T = 298 K with the results
of experimental measurement (circles) [26] and from three semi-empirical models.

studied here, while the Murnaghan EOS gives slightly larger volumes at high pressures. It is
noted here that we used the same zero-pressure bulk modulus B0, pressure derivative B ′

0 and
equilibrium volume V0, obtained by ab initio calculations, in the three models and did not treat
them as fitting parameters. More extensive studies have shown that the APL model works
much better than the Murnaghan model and Birch model in the very high-pressure regions for
a lot of systems [29]. The ab initio calculations together with the experimental measurements
provide a benchmark for checking the validity of different semi-empirical models in the high-
pressure region.

Having the EOS to hand, the volume thermal expansion coefficient αV can be directly
derived from equation (2.5). In order to compare with the experimental results, we calculate
here the linear thermal expansion coefficient αL which equals αV /3. Figure 3 shows the
variation of αL with temperature and pressure. The experimental results for αL at one
atmospheric pressure [30] (1 atm = 1.013 × 10−4 GPa) are shown as circles for comparison.
It can be seen that at zero pressure, αL increases exponentially with T at low temperatures and
gradually approaches a linear increase at high temperatures. When the pressure increases, the
increase of αL with temperature becomes smaller, especially in the high-temperature range.
At a given temperature, αL decreases drastically with the increase of pressure (figure 3(b)).
When the pressure is above 60 GPa, the thermal expansion coefficient αL at T = 800 K is just
a little larger than that at T = 300 K, which means that the temperature dependence of αL is
pretty small at high pressure. In the meantime, the variation of αL with pressure also becomes
smaller at high pressures.

The B–P –T relationship is shown in figure 4. At fixed pressure P (figure 4(a)), B dec-
reases almost linearly with increasing T , while at a given temperature T (figure 4(b)), B

increases almost linearly with P . From the comparison of figure 4(a) and figure 4(b), we
can see that the effect of pressure on B is much more significant than that of temperature.
The available experimental result [31] (the circle in figure 4(a)) at ambient pressure and room
temperature is shown in figure 4(a) for comparison.
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Figure 3. The variation of the linear thermal expansion coefficient αL with temperature (a) and
pressure (b). The available experimental results are shown by circles [30].
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Figure 4. Variation of the bulk modulus of Ni with temperature (a) and pressure (b). The available
experimental result [31] is shown by a circle.

The pressure dependence of the phonon dispersion curves of Ni at 298 K is shown in
figure 5 and the corresponding variation of the phonon density of states with pressure is shown
in figure 6. We can see that the phonon frequencies of Ni in all high-symmetry branches (except
for zero frequency at the � point) increases with the increase of pressure, which is consistent
with the increase of the bulk modulus under pressure (see figure 4). The phonon density of states
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Figure 5. Calculated phonon dispersion curves of Ni at T = 298 K. (a) P = 0 GPa. Exp-
erimental neutron scattering data [32] are denoted by circles. (b) P = 20 GPa. (c) P = 40 GPa.
(d) P = 80 GPa.
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Figure 6. Calculated pressure dependence of the phonon density of states of Ni at T = 298 K.
(a) P = 0 GPa. (b) P = 20 GPa. (c) P = 40 GPa. (d) P = 80 GPa.

spreads up to the high-frequency domain as the pressure increases. Such frequency shifts can
be directly detected by high-pressure Raman scattering or neutron scattering experiments. The
calculated frequencies at zero pressure are in good agreement with the experimental data [32].
Unfortunately, for the high-pressure results, there are no experimental measurements available
for a direct comparison.



High-pressure properties of Ni 8959

The spin-polarized band structures of Ni at different pressures are shown in figure 7 (spin-
up bands) and figure 8 (spin-down bands) and the corresponding electronic densities of states
(DOS) are shown in figure 9 (spin-up bands) and figure 10 (spin-down bands). The energy
zero is set at the Fermi level in figures 7–10. It can be seen that the spin-up d bands are fully
filled (in figure 7 and figure 9) while the spin-down d bands are partially filled (in figure 8
and figure 10). Such different numbers of spin-up and spin-down electrons give rise to the net
magnetic moment. The energy bands for both spin up and spin down spread downwards as the
pressure increases. The corresponding DOS shift downward accordingly. In the meantime,
the height of the DOS at the Fermi level (spin-down bands) decreases with pressure which
means fewer electronic states at the Fermi level when the pressure is high.
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Figure 7. Pressure dependence of the spin-up energy bands of Ni. (a) P = 0 GPa. (b) P = 20 GPa.
(c) P = 40 GPa. (d) P = 80 GPa.
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Figure 8. Pressure dependence of the spin-down energy bands of Ni. (a) P = 0 GPa.
(b) P = 20 GPa. (c) P = 40 GPa. (d) P = 80 GPa.

Figure 11 shows the pressure dependence of the magnetic moment of Ni at 0 K in units
of Bohr magnetons (µB) per atom. It can be seen that the magnetic moment of Ni decreases
monotonically with pressure. At P = 0 GPa, the calculated magnetic moment is 0.63 µB

which is in agreement with the experimental value of 0.62 µB [33]. The decrease of magnetic
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Figure 9. Pressure dependence of the spin-up electronic density of states of Ni. (a) P = 0 GPa.
(b) P = 20 GPa. (c) P = 40 GPa. (d) P = 80 GPa.
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Figure 10. Pressure dependence of the spin-down electronic density of states of Ni. (a) P = 0 GPa.
(b) P = 20 GPa. (c) P = 40 GPa. (d) P = 80 GPa.

moment with pressure indicates a weak ferromagnetism of Ni at high pressures. In order to
characterize the variation trend of the magnetic moment (M) of Ni with pressure, we fit the
calculation results using a simple formula: M(P) = M0 + αP + βP 2. The values obtained for
α and β are −1.18 × 10−3 µB GPa−1 and 6.8 × 10−6 µB GPa−2, respectively. This formula
can be easily used and checked in other high-pressure studies.
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Figure 11. Pressure dependence of the magnetic moment of Ni.

4. Summary

In this study, we have calculated the thermodynamic, electronic and magnetic properties of Ni,
using the quasiharmonic approximation within the density-functional theory. The equation of
state is constructed from the ab initio Helmholtz free energy. The volume dependence of the
phonon frequencies is calculated from the density-functional perturbation theory. It is found
that the high pressure results in a smaller thermal expansion coefficient, a larger bulk modulus,
higher phonon frequencies and smaller magnetic moment. The results obtained for the
quantities investigated are in good agreement with the available experimental measurements.
Comparing with the experimental data and ab initio calculations, it is found that the Birch
EOS gives a better description of the P –V relationship of Ni under high pressures than the
Murnaghan EOS does. We also give a simple relationship between the magnetic moment of
Ni and the external pressure.
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